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Abstract
Computational thinking is a contemporary science and engineering practice that has been
introduced to the US science classrooms due to its emphasis in the Next Generation
Science Standards (NGSS). However, including computational thinking into science
instruction may be challenging. Therefore, for biological evolution (an essential theory
within biology that spans across temporal and organizational scales), we recommend
integrating computational thinking into evolution teaching to overcome misconceptions,
reinforce the nature of science (NOS), and allow student embodiment (as students
become emerged in their models, i.e., personification). We present a learning progression,
which outlines biological evolution learning coupled with computational thinking. The
defined components of computational thinking (input, integration, output, and feedback)
are integrated with biology student roles. The complex nature of both teaching compu-
tational thinking and biological evolution lends toward a learning progression that
identifies instructional context, computational product, and computational process and
spans from simple to complex. Two major themes of biological evolution, unity and
diversity have each been paired with both computational thinking and specific corre-
sponding NGSS standards at levels of increasing complexity. There are virtually no
previous studies which relate computation and evolution across scales, which paves the
way for questions of importance, support, benefits, and overall student achievement in
relation to the advancement of science in education.

1 Introduction

Biological science is a rich domain that may facilitate students’ exploration of the natural
living world. Currently, in the USA, many educators are developing, implementing, and
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revising biology courses (a standard life science course) in a manner that is heavily influenced
by the Next Generation Science Standards (NGSS Lead States 2013). The three-dimensional
framework underlying the NGSS suggests to optimize science learning via classroom instruc-
tion that integrates scientific practices, disciplinary core ideas, and crosscutting concepts
(National Research Council 2012). Further, this three-dimensional framework seems to be
impacting how biology is taught throughout the world (Lederman 2019). However, integrating
even two of these dimensions, such as computational thinking (a scientific practice) and
biological evolution: unity and diversity (a disciplinary core idea), is quite challenging, in part
due to a lack of theoretical grounding (Weintrop et al. 2016). In this paper, we present a
learning progression that integrates computational thinking and biological evolution to facil-
itate students’ conceptual learning of fundamental scientific content and nature of science
(NOS). Although we present this progression through the perspective of three-dimensional
learning specified in the NGSS, we argue that the integration of computational thinking and
biological evolution is practical and beneficial for science learning within a broader worldwide
context.

The theory of evolution—which provides the scientific explanation for the mechanisms that
drive living populations, and in turn, species of living organisms to change over time through
the forces of natural selection—informs every aspect of modern biology (Campbell et al. 2000;
McCain and Kampourakis 2018). Many famous biologists agree with Dobzhansky’s (1973)
claim that “Nothing in biology makes sense except in the light of evolution.” As students
master foundational evolutionary ideas (e.g., natural selection, the concept that inheritable
traits that help an organism survive and reproduce within its environment become more
common in a population over time), they come to a deeper understanding of “the how” and
“the why” of the processes that drive life’s changes over various time and organizational
scales. As students (and scientists) develop richer knowledge of evolution, they can hypoth-
esize about biological topics to a greater extent (e.g., how species are related, inherent human
behaviors, various aspects of molecular genetics, and ecosystem dynamics; Griffith and Brem
2004).

Many educators, researchers, and institutions have developed a variety of learning tools,
practices, and interventions to facilitate student learning of biological evolution. For example,
the Concord Consortium (2018) lists eleven current and three former research projects
associated with students’ learning about evolution. In order to achieve scientific literacy
(encouraging science learning as praxis by allowing students to identify solutions
that transform practical relevant scientific problems; Levinson 2010; Aikenhead 2007) by
graduation, the National Research Council (2012) recommends that computational thinking
should be integrated into life science courses through the K-12 curriculum. In order to be
effective, computation should be infused into curricular materials using the theory that blends
computational, scientific, and educational perspectives (Sengupta et al. 2013). This is espe-
cially important because modern science, particularly biology, is becoming increasingly
computational in nature (e.g., bioinformatics, data analytics, genomics, ecosystem modeling)
and technological change (in general) is exponential. Because using computational thinking is
inherently cross-curricular, it allows students to identify and solve technological problems
which have and will continue to arise within democratic societies (Shen 1975).

Computational thinking is essential for biologists (and students) to better understand life
processes and systems because evolution spans across several temporal and organizational
scales (Guo et al. 2016). Conversely, some have speculated that deep understanding of
computational thinking can occur through the perspective of evolution because both biological
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life and computer code emerge through and are guided by evolutionary progressions (Toffoli
2004). For example, students may need to explore the properties of individual agents such as
cells that make up tissues and eventually organs and organ systems within organisms. As
students assign properties to cells using computational tools (i.e., coding), the emergent
properties of organisms become more evident to students (because different levels of the
biological organization may display different ontological properties; Chi et al. 2012). This
level of understanding may occur through computation as students envision themselves within
models they develop using these thought processes (i.e., embodiment, which also aligns with
the NOS). In this way, emergent properties of biological evolution parallel emergent compu-
tation (and the tools required in learning emergent computation resemble those used by
scientists in the field).

Computational thinking in science sits at the intersection of (a) scientific disciplinary
knowledge (e.g., biological knowledge), and (b) computation and (c) mathematics as con-
structs for problem-solving (Denning 2017). Computational thinking is the thought process
involved in formulating problems (e.g., algorithms) within a particular domain (e.g., biology),
such that solutions (e.g., representations) may be presented through the most effective steps
(Aho 2012). However, this notion of computational thinking is sufficiently vague for appli-
cation to instruction by typical educators. Further, computational thinking neither has a clear
definition nor explicit methods for inclusion in science learning (Wing 2006), even though the
NGSS framework encourages computational thinking and provides educators the flexibility to
design engaging learning experiences for students (i.e., emphasizing the development of
subject-specific skills alongside NOS practices as facilitated through computational thinking;
National Research Council 2012). Therefore, this paper presents a learning progression
integrating computational thinking (i.e., a common practice employed by biologists) alongside
evolutionary concepts.

Our proposed learning progression represents three aspects of computation that should be
present in classroom environments: (1) the computational context (as provided by instructor),
(2) computational product (as produced by a student), and (3) the computational process (the
actual act of student development of and with the computational components). The student’s
computational process as facilitated by the instructor includes students’ reasoning about and
implementation of four computational components: input, integration, output, and feedback (as
modified fromWeintrop et al. 2016). This process may allow students to predict phenomena at
a variety of biological levels, resulting in a higher level of cognitive engagement, and thereby
deepening students’ understanding of evolution. In parallel, as scientists solve problems (in
conjunction with our computational components), it requires thinking about their data (input),
the relationship of the variables (integration), the results (output), and re-modeling their
original assessment (feedback). Computational thinking in the way we have defined it (within
the context of education) fully encompasses this scientific process through the use of the
computational components (further aligning it with NOS practices).

We also considered educational theory in the development of our learning progres-
sion. As students work actively through using computational thinking in cooperation
with their classmates, understanding can be brought from a social context to the
individual (Vygotsky 1962). In this learning process, students transform and rationalize
new information based on their prior knowledge and internalized mental schema (Piaget
1976). This combination of social and cognitive constructivist philosophies outlines an
active process of shared and individual knowledge construction that may promote deep
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life science learning through computational thinking (Basawapatna et al. 2013; Fisher
et al. 2016; Guo et al. 2016; Wing 2006).

We have aligned our learning progression with an eye toward international relevance.
Although we developed this learning through the perspective of the NGSS, in part, we noted
that many countries’ science standards parallel the NGSS (Moore et al. 2015). For example,
such standards promote approaches and methods that encourage students to ask questions,
evaluate evidence, and justify the validity of their own ideas, as well as the ideas of others
(National Research Council 2010). Studies indicate that incorporation of scientific practices
(e.g., computational thinking) is common to science courses in many countries, with consid-
erable attention also given to closely related NOS concepts (Research Council 2012). Further,
the International Society for Technology Education claimed that global standards are quite
similar to the NGSS in emphasizing computational thinking (and related concepts), as well as
embedding computation across disciplines (Grover and Pea 2013). The NGSS also added
research-derived benchmarks that align the standards with international tests (e.g., Canada,
England, Finland, Hong Kong, Hungary, Ireland, Japan, Singapore South Korea, and Taiwan;
Moore et al. 2015).

Thus far, we have introduced the alignment between evolution learning and computational
thinking, and how such learning may be facilitated through a learning progression. We have
identified the importance (and global relevance) of computational thinking within the NGSS as
supported by educational theory. We now delve deeper into each of the aspects, and specif-
ically, discuss our theoretical framework that integrates (a) relevant challenges of biological
evolution education (conceptual change, misconceptions, social and emotional implications,
and its relationship to the NOS and NGSS), with (b) distinct characteristics of computational
thinking, and (c) illustrate their relationships to the NGSS and biology learning. We then
present, in some detail, a proposed learning progression for biological evolution as supported
by computational thinking, which emerged from our theoretical framework. The proposed
learning progression describes a transition from simple to complex and includes instructional
contexts, computational process, and computational products that would be displayed and
practiced by students within classrooms. Two major themes of biological evolution have been
identified as unity and diversity and have each been paired with computational thinking
processes and specific NGSS standards. The final section concludes the paper by highlighting
gaps in our current understanding of how learning about biological evolution may be facili-
tated by computational thinking. Addressing these research gaps has the potential to direct
future researchers and educators toward fully fleshing out a more robust and effective learning
progression through the development of specific student tasks, assignments, and assessment
tools. Further, we suggest that practitioners use it to incorporate computation into lessons they
already teach as a practical starting point.

2 Theoretical Framework

2.1 Learning about Biological Evolution

As individuals become scientifically literate, they tend to use their scientific knowledge to
holistically shape their worldview (Stocum 2015). As this type of thinking becomes the norm,
it may cause societal shifts in scientific thinking. For example, evolutionary biologists are
frequently called upon to bridge gaps between various disciplines such as biology, medicine,
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and psychology because evolutionary concepts provide interdisciplinary explanations (Antolin
et al. 2012). This is especially important at a time when students have access to a variety of
competing information. Increased scientific literacy allows students to better navigate inter-
disciplinary scientific constructs of societal importance (including evolution and climate
change; Sinatra and Lombardi 2020). Thus, more general reasoning and cognition required
for scientific literacy may be learned through one topic (e.g., evolution) and transferred to
another (e.g., climate change; Beggrow and Sbeglia 2019).

Having knowledge of biological evolution is required by citizens of a democracy to make
informed long-term environmental decisions, to cultivate sustainable agriculture, to stay ahead
of pathogenic diseases, to battle genetic conditions, and to make sense of human emotion
among many other phenomena. Evolutionary principles lay the foundations for student
understanding of modern medicine, sustainable conservation, and human psychology
(Sinatra et al. 2003). Learning evolution urges students to think like scientists, recognize
biological processes, and better grasp the dynamics of nature and the limits of science.
Identifying how and why scientific inquiries and questions are important within the holistic
domain of biology requires a genuine and authentic understanding of biological evolution
(Alters and Nelson 2002).

Understanding biological evolution also allows students to better appreciate biology as a
discipline as it can be observed at and between all levels of biological organization (Campbell
et al. 2000). The two major themes of biological observations in a scientific study that have
stimulated students and scientists at various levels of complexity are the exploration of the
unity and diversity of life. In other words, how is there such a diversity of life on Earth and
among all this diversity, how can the various similarities among organisms be explained? We
know that organisms are related to each other but understanding exactly how and why may
answer these two questions at various levels of biological organization and temporal scales
(College Board 2009).

Teaching biology without ensuring proper student understanding of evolution may impede
students’ understanding of order and coherence that fosters a systematic understanding of life,
as well as how these living systems interact with non-living systems that they encounter in
other domains (e.g., energy systems encountered in physics and chemistry). Specifically,
defining and understanding relations between variables within living and non-living systems
is a common practice in biology learning. However, it is challenging for students to compare
fundamental concepts in the physical sciences to biology, due in part, to the compounding
interplay of variables that are involved in these systems (Guo et al. 2016). Computation may
be one way to bridge the gap between biological evolution learning, variable relationships, and
mathematics, similar to what also occurs in physical science classrooms (Gross 2004).

2.2 Misconceptions about Evolution and Conceptual Change

Conceptual change about biological evolution may be facilitated by computational thinking
because of the greater potential for deep engagement (e.g., engagement in the content similar
to practicing biologists; Dole and Sinatra 1998). This may be emphasized specifically by
reasoning about individual biological elements at multiple levels of organization within
biological systems (as prompted by computational thinking; Toffoli 2004). Biology students
may have ideas about the nature of biological evolution, but these ideas may be
unsophisticated and or incorrect. For example, Coley et al. (2017) reported that students’
naive intuitions about biology persist from middle school to the university level, revealing little
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influence of high school biology on students’ learning. Specifically, students persist in
thinking about evolution in ways that are (a) teleological (i.e., causal reasoning in which a
goal, purpose, function, or outcome of an event is taken as the cause of that event; Keil 2006),
(b) essentialist (i.e., some unobservable essential property, such as an “underlying reality” or
“true nature” conveys category identity and causes observable similarities among category
members; Gelman 2003), and (c) anthropocentric (i.e., attribute human characteristics to non-
human or inanimate objects; Gee 2013). As such, evolution is a difficult concept for students
to learn and may require conceptual change (Sinatra et al. 2003).

Conceptual change has been of strong interest in science education for many decades and
must occur in order for most students to learn and understand evolution due to common
misconceptions, such as humans evolved from modern-day apes or the impossibility that
complex life forms arose from very simple ones (Sinatra et al. 2008). A relatively early
theoretical position on conceptual change was established by Posner et al. (1982), which later
became known as the Conceptual Change Model (CCM; Pintrich et al. 1993). The CCM
model incorporates Piaget’s knowledge assimilation theory (1976), which states that when
students encounter a new idea it must “fit into” what they already know. The CCM assumes
that students have their own ideas on concepts (e.g., naive theories about biology and
biological evolution) that are inconsistent with scientific understanding. Reconstruction of
these naive theories may be facilitated through effective instruction (e.g., students’ active
reflection on their existing conceptions to help resolve the misconceptions they may have).
The CCM posits that conceptual change occurs in four sequential steps: (a) students must be
dissatisfied with their prior conception, (b) students must find the new concept intelligible and
(c) plausible, and (d) students should see how the new concept would be beneficial (e.g., in
opening new avenues of inquiry and expanding toward topics that hold student interest; Zirbel
2004). Some biology curricula, such as the modeling-based labs in advanced placement (AP)
Biology (College Board 2012), use the CCM as a learning framework. AP courses are
provided at the high school level and prepare students to take a subject-specific test in which
they can sometimes earn college credit for the course which is dependent on performance.

Success in conceptual change requires appropriate teacher facilitation and sufficient cog-
nitive activation experienced by students, both of which are heavily dependent on student’s
activities and interactions within a classroom (Duit and Tesch 2010). As students become
involved with computation, they undergo unique learning experiences that allow for immer-
sion within their computational models, this phenomenon is known as embodiment (which can
facilitate transformative experiences; Jacobson and Wilensky 2006). In biology learning,
embodiment occurs as students imagine and develop new ideas about how certain biological
agents interact within their own constructed systems (Jacobson and Wilensky 2006). Students
understand, imagine, and personify what it is like to be a biological entity (such as a cell) in
order to properly develop the appropriate computational processes (e.g., setting up parameters
for cells). As students become immersed within their computational processes (e.g., via
modeling), the likelihood of conceptual change increases because embodiment makes evolu-
tion more plausible (believing it to be truthful), intelligible (knowing what it means), and
fruitful (useful) (Vosniadou et al. 2008).

Students must grasp specific concepts at various biological levels in order to understand
evolution. Frequently, these steps of understanding occur in a specific order, and these steps
are naturally built into the NGSS. In order to understand natural selection (the driving force of
evolution), students must also understand the concepts of variation and fitness of organisms,
variance of individuals within a population, reproduction over time, and the concept of
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inheritance and heredity (Campbell et al. 2000). The typical steps in understanding natural
selection are (1) spontaneous mutations variation, (2) a change in the environment, (3)
individuals with suitable characteristics survive, (4) characteristics are inherited, and (5)
frequency of these characterist ics increases in the population over many
generations (Brumby 1979).

Even many advanced biology students believe the common misconception that a change in
the environment induces mutation which adapts individuals to changed conditions, and
that these are the acquired characters are passed on (i.e., Lamarck’s Theory of Inheritance of
Acquired Characteristics, deemed incorrect through Darwin’s research; Catley et al. 2005). In
reality, mutation is spontaneous and most often random, and only sometimes results from
explicit environmental change (e.g., radiation which is frequently detrimental to life). Addi-
tional common misconceptions include the distortion of the time scales of evolution or the
belief that adaptation is a process that drives toward a positive end (Brumby 1979). Students
may represent these concepts computationally in order to combat these misconceptions
through proper development of their input, integration, and output, based on real biological
facts and principles (e.g., representing randomness). This becomes especially helpful to
students as they start to develop ways in which their model outputs can re-inform the next
set of input based on phenomena that occur in nature (Chandrasekharan and Nersessian 2015).

Instructional practices associated with evolution should reinforce the ideas that many
processes in the natural and physical world are open-ended and dynamic. Because evolution
is an emergent process, it is not neatly bounded and ongoing without a clear start or end,
ontological shifts in student thinking may be required for students to comprehensively
understand the evolutionary theory (i.e., the misconception that evolution is a direct process
as compared to the accepted perception that evolution is an emergent process; Chi et al. 2012).
Interestingly, such an ontological shift toward evolution as an emergent process may be
facilitated by computational thinking because (the student process of) computation itself is
an emergent process (Berland and Wilensky 2015).

2.3 Social and Emotional Aspects of Evolution Learning

Unique ideas and thought processes that are just outside of students’ comfort zones, while still
maintaining a low level of frustration, are optimal for developing a manageable environment to
confront and consider conceptions counter to naive theories (Vygotsky 1978). It is important to
consider that learning about evolution affects students emotionally (Sinatra et al. 2003).
Maintaining comfortable emotions and sustaining motivation is imperative in learning about
evolution (Broughton et al. 2013). Using computational thinking in classrooms has the
potential to promote positive experiences when learning about evolution (Ioannidou et al.
2011).

Cognitive dissonance may occur for students learning biological evolution if those close to
them do not accept the notion or if evolution conflicts with religious beliefs. For example,
students may hold a belief that as people accept the theory of evolution, they become
increasingly racist and selfish, or that there is an inverse relationship between acceptance of
evolution and personal spirituality (Griffith and Brem 2004). Some biology students may
worry that the acceptance of evolution will diminish their sense of purpose and self-
determination as they confront the idea that they may only be a mass of evolving neurons
with no divine direction (Sinatra et al. 2003; Campbell et al. 2000). Not only do students have
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this worry, but it is also a major concern of biology teachers, which may lead to apprehension
toward the subject matter (Griffith and Brem 2004).

There is a possibility that evolution learning fosters frustration because associated concepts
are complex and/or abstract (Mead et al. 2018). Educators who have more knowledge
of biology and scientific practices, and have also been exposed to scientific experiences
(e.g., research projects) are less likely to have misconceptions and accept the theory (Nehm
et al. 2009). Therefore, not only is it important for students and educators to maintain
comfortable emotions while learning the subject matter, but also that they have the scientific
aptitude (Mead et al. 2018).

In order for students to let go of old theories and accept new ones (e.g., about biological
evolution), the new idea needs must be interconnected with other ideas they already have about
the world (Piaget 1976). It is also beneficial for learning if their peers show an interest or belief
in these new ideas (Dole and Sinatra 1998). Fostering a positive dialog about differences in
cultural or religious beliefs coupled with emphasizing the nature of science may be one of the
most effective instructional methods for teaching evolution, especially when it is controversial
for students (Pobiner et al. 2018).

Computational thinking incorporates many of these aspects (positive emotions, motivation,
personal relevance, and productive social context) and may provide a student learning
experience that promotes a deep understanding of biological evolution through embodiment
(Wilensky and Reisman 2006). Interestingly, standards of effective computational tools
support positive learning experiences by encouraging (a) low threshold experiences, where
students can quickly produce working code; (b) high ceiling experiences, where students can
produce code that solves sophisticated problem solving; (c) proper scaffolding, where curric-
ulum that sequentially builds students’ skills and knowledge from low threshold to high ceiling
code; (d) transferability, where students can apply their learned coding skills and knowledge
outside the classroom context; (e) equity, where students use their coding skills and knowledge
to promote greater accessibility; and (d) systemic and sustainable experiences, where students
can apply their coding skills and knowledge into other academic domains (Ioannidou, Bennett,
Repenning, Koh, & Basawapatna, 201 l).

2.4 Evolution and Teaching the Nature of Science (NOS)

A deeper understanding of the NOS as a systematic interplay between science, intellectual and
cultural traditions, and contemporary issues may help students to better understand and accept
the scientific validity of evolution (AAAS 1990; Nelson et al. 2019). Biology instruction also
requires unique solutions and specific implementations tailored to address misconceptions
while developing student understanding of the NOS. For example, students may need to
engage in evaluating the connections between lines of evidence and alternative explanations
that are both scientific (i.e., the theory of biological evolution) and non-scientific (e.g.,
intelligent design) as suggested by Heddy and Nadelson (2013). Such an evaluation may be
facilitated through computational thinking (considering student use of and engagement with
computational input, output, integration, and feedback) and could help to reconstruct common
misconceptions about biological evolution, such as teleologicalism, essentialism, and anthro-
pocentrism (Sinatra et al. 2008). It is reasonable to hypothesize that computation should
strengthen student knowledge and NOS processes contributing to biology understanding, but
it is unclear to what degree and in what ways (Gallagher et al. 2011).
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Language of evolution is another challenge for students because some terms such as design,
need, theory, and adaptation have everyday meanings, but are highly specific when learning
about evolution. This language may contribute to misconceptions and are also linked to
student understanding of the NOS (Sinatra et al. 2008). For example, the theory of evolution
may be mistaken as an untested hunch due to everyday misuse of the word theory, rather than
as an observable process that can be seen at all levels of biological organization from the
micro- to the macro-biological levels. These concepts are not limited to biology learning, but
more broadly associated with the NOS. Evolution is an example of a specific topic where
confusion between everyday language and scientific language may contribute to students’
misunderstanding. Therefore, computational thinking (e.g., using computation as a tool) may
clear some of this confusion because students actively use NOS vocabulary as they construct
knowledge.

NOS instruction also involves teaching about methodological principles of scientific
knowledge, the nature of scientific understanding, and the limits of scientific knowledge. As
students better understand scientific practices and modes of thinking, emotional demands may
diminish for those who view evolution as contrary to their religious beliefs (Sinatra et al.
2008). Furthermore, engaging in scientific practices may foster open-mindedness and the idea
that science involves the process of knowledge construction; science is neither an intrinsic
source for answers nor categorically a contradiction to religious beliefs. Dole and Sinatra
(1998) claimed that high levels of engagement required by complex activities such as inquiry,
personal reflection, and justifying reasoning, encourages students to compare their beliefs to
the content of evolution. This willingness to think deeply about complex problems may allow
for questioning of personal beliefs (Sinatra et al. 2003). Thus, higher engagement with NOS
and scientific inquiry via computational thinking may help students to practice methods
facilitating their acceptance of the theory.

NGSS has chosen to embed the NOS within their three-dimensional framework of (a)
scientific practices, (b) disciplinary core ideas, and (c) crosscutting concepts (Lederman and
Lederman 2014). This framework posits that as students engage in scientific practices, they
will develop a deep understanding of both scientific concepts and the NOS (NGSS Lead States
2013). The NGSS framework claimed that integrating scientific practices and content “will
require substantial redesign of current and future curricula in order to provide increasingly
sophisticated [science learning] experiences across grades” (p. 247). In the case of biological
evolution, increasingly sophisticated learning experiences (such as computational thinking)
could be used to reconstruct naive theories in a way that productively engages students. For
example, because emergent properties associated with evolution provide difficulty for students
(Chi et al. 2012), the learning tasks associated with biological evolution in classrooms should
allow for exploration of these properties, while also exploring the relationship between
evidence and explanations. Computational thinking is a novel way to engage students and
would mimic how scientists gather and evaluate reliable evidence and construct valid expla-
nations (Lederman and Lederman 2014).

2.5 NGSS: Biological Evolution as Unity and Diversity

In the USA, educational stakeholders formulated the Next Generation Science Standards
(NGSS Lead States 2013) based on the science education framework released the year prior
(National Research Council 2012). The NGSS integrates scientific practices, disciplinary core
idea, and crosscutting concepts to form performance expectations (aka learning standards).
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Many of these performance expectations grant flexibility for educators and include both
computational thinking as a scientific practice and biological evolution as a disciplinary core
idea. The NGSS threads in specific scientific practices in which evolutionary biologists
engage, such as computational thinking, both of which can be used to explore life’s unity
and diversity.

There are a variety of NGSS performance expectations that may address by integrating
biological unity and diversity with computational thinking (NGSS Lead States 2013). Educa-
tors already incorporate these standards into their classrooms using little (or very simple forms
of) computation. Per the NGSS, elementary students are expected to develop appropriate NOS
processes and simple biological principles that set them up for more advanced biological
evolution principles. For example, by third-grade students should recognize life cycles and
commonalities between life forms. In middle school, students are expected to analyze and
interpret data for patterns in the fossil record that document existence, diversity, extinction, and
the change of life forms through Earth’s history (NGSS Performance Expectation [PE] MS-
LS4-1). Students should explore this standard with the understanding that natural laws operate
in the past the same way they do today (i.e., students are expected to apply these thought
processes to historical evidence). Students should also be able to construct explanations based
on evidence that describes the genetic variation of traits in a population. This includes those
traits that increase an individual’s probability of surviving and reproducing in a specific
environment (NGSS PE MS-LS4-4). At the middle school level, students are also expected
to gather and synthesize information about technologies that influence the way humans alter
inheritance of desired traits in organisms (e.g., artificial selection or genetic engineering).
Students should also be able to use mathematical representations to support explanations of
how natural selection may lead to increases or decreases in specific traits over time (NGSS PE
MS-LS4-6).

At the high school level, the NGSS (2013) prompts students to display and communicate
appropriate information regarding common ancestry and that biological evolution is supported
by many lines of evidence (NGSS PE HS-LS4-1). Students are expected to construct an
explanation based on evidence that the process of evolution results from four factors: (a) the
potential for a species to increase in number, (b) the heritable genetic variation of individuals in
a species due to mutation and sexual reproduction, (c) the competition for limited resources,
and (d) the proliferation of those organisms that are better able to survive and reproduce in
their environment (NGSS PE HS-LS4-2). Statistics and probability should be used to support
student explanations that organisms with advantageous heritable traits tend to increase in an
environment as compared to organisms without the trait (NGSS PE HS-LS4-3). Students
should be able to construct an explanation based on evidence for how natural selection leads to
the adaptation of populations (NGSS PE HS-LS4-4). Students should also be able to evaluate
evidence supporting the claims that changes in environmental conditions may result in (a) an
increase in the number of individuals of some species, (b) the emergence of new species over
time, and (c) the extinction of other species (NGSS PE HS-LS4-5). These biological evolution
areas from the NGSS can be naturally explored using the NOS. The integration of computa-
tional thinking into these PEs may facilitate deeper engagement with more coherency about
different grade levels.
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3 Computational Thinking

Thoughts on computational thinking have progressed over time in terms of its definition, its
necessity and role in education, and its relations to various scientific disciplines. Depending on
the content area, specific reasoning topics or modes of thinking related to computational
thinking have emerged. This is especially due to exponential growth in technology, which in
turn, has contributed to theory (e.g., game theory and theoretical bioinformatics; Holyoak and
Morrison 2012). Computational thinking for example has been associated with the rising field
of computer science since the 1940s. Perlis, Simon, and Newell (1967) wondered if compu-
tational thinking would span across fields by the mid-1960s through integration within
different domains; interestingly, this is one of the goals of the NGSS. For the purposes of
our learning progression in terms of initial implication, it is suggested that educators consider
current lessons they have and identify ways to incorporate computation. We suspect this
assimilation process may become more complex over time as practitioners become more
familiar with the constructs.

Certainly, this integration has not been fully realized and the question of how and why
computational thinking spans across domains is still relevant. For example, should computa-
tion associated with the weather (e.g., atmospheric computation) be integrated within the
context of meteorology or should computational thinking be taught as a domain general
process? Some think of computational thinking solely within the specific context of designing
models and developing the skills that are required for developing and designing software
packages that are implemented by electronic machines (e.g., computers). Specifically, in the
realm of education, it is thought that computational thinking will allow students to become
better problem solvers in a digital world and across different disciplines (Denning 2017).

Newel et al. (1967) argued that computer science was a legitimate area of study because of
the complex thought process required by humans (Denning and Freeman 2009). Thinking
associated with computational analysis yields important empirical and theoretical results
(Holyoak and Morrison 2012). Although there is an overlap between computer science and
computational science, and there are distinct differences, computer science is specifically
focused on engineering, theory, experimentation, design, and associated practices that are
associated with computer technology. Although computational thinking may involve com-
puters, the direct focus is using computation to explore scientific (and other) disciplinary
problems (i.e., computational thinking may be viewed as a trifold intersection of a domain
[science] knowledge, computational processes, and mathematical constructs; Aho 2012). Marr
(1977) suggested that complex systems, such as computers and the human mind, have
different levels of analysis: computational, algorithmic, and representational, with the
computational level preceding the algorithmic level, which in turn precedes the
representational level. Marr stressed the importance of the computational thinking as
foundational. Aho (2012) similarly claimed that computational models are abstractions that
are at the heart of computational thinking.

Today’s teachers struggle with what computational thinking is, how it is assessed, and if it
is appropriate for everyone to learn (Denning 2017). The relevant problems regarding com-
putational thinking are (1) that there is no consistent definition for science educators (Selby
andWoollard 2013), (2) that researchers and educators are unsure of most effective methods of
implementation in science classrooms (Wilensky 2014), (3) and exactly if and how computa-
tional thinking is beneficial to science students (Speth et al. 2009).
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3.1 Computational Thinking within the Learning and Teaching Process

Vygotsky (1978) claims that knowledge is constructed through the interactions with others and
using tools (e.g., the multiplicity of technologies that surround us, including digital artifacts of
the media world and specialized processes of the digital world; Gadanidis 2017). New
technology is immersive in nature in that it supports, disrupts, and reorganizes human thinking
and leaves humans to act and be acted upon based on actor-network theory (Latour 2005).
Therefore, key elements of computational thinking can allow us to think-with and in the
learning and the teaching processes (Gadanidis 2017).

With the exponential increase in technology, ethical concerns over fields such as bioinfor-
matics, simulations (abstractions), and artificial intelligence (AI) are of interest to psycholo-
gists, mathematicians, computer scientists, biologists, cognitive scientists, and engineers.
Moor’s computer ethics and bioethics have not yet been considered together; however, the
rise of bioinformatics alone warrants research in terms of the future of health care and other
socioeconomic implications (Hongladarom 2006). Artificial intelligence already has a platform
in formal education, as AI can act as a tutor, facilitate open online courses, and is responsible
for many online searches. Here, we define AI as the study associated with developing
computers and software capable of intelligent behavior. Agency and associated features of
self-regulation and self-learning are key aspects of AI and synonymously, student agency is
emphasized in computational thinking education environments. Today’s students should
explore the use, development, limits, future projections, and ethical concerns of AI.

Science education, artificial intelligence, and computational thinking each have three key
elements which include agency, modeling, and abstraction (Gadanidis 2017) all of which are
important contexts for classroom incorporation. Our trajectory of engagement with abstraction
seems to intensify as a society, especially as digital code writes war machinery (e.g., weap-
onized drones), stock market transactions, robotics, and AI (Tamatea 2019). Abstraction may
play a particularly important role in AI development, as the programmer “tells” the computer
how to recognize certain features and set parameters based on certain elements and variables.
Abstraction is also the key element of computational thinking because concepts are generally
symbolic and represented (or manipulated) by code. Although Piaget claims that young
children may not be capable of abstract thinking (Gadanidis 2017), abstraction may allow
students to better manage complexity by reducing complex information and details. In other
words, exposing students to (simple forms of) computational thinking at younger ages may
allow for more effective learning later on (Gadanidis 2017).

Students must assimilate knowledge (i.e., domain specific content) into what they already
know about computational processes per Piaget’s knowledge assimilation theory (1976).
Proper scaffolding of computational processes may facilitate a higher ceiling for students to
abstract, automate, and dynamically model concepts, for both computational and content
knowledge. For example, as students change computer code, they may simultaneously change
parameters within their models. This allows students to manipulate and model information
related to the content (e.g., students can “play with concepts” and bring them to life; Gadanidis
2017). In such a learning scenario, computational thinking includes (1) formulating problems
for use with a computer to facilitate the solution; (2) logically organizing and analyzing data;
(3) representing data through abstractions; (4) automating solutions through algorithmic
processes; (5) identifying, analyzing, and implementing possible solutions as the most efficient
and effective combination of steps and resources; and (6) generalizing and transferring this
process to a variety of problem areas (Ioannidou, Bennett, Repenning, Koh, & Basawapatna,
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201l). We have merged and emphasized these (computational) components in our learning
progression.

Peel et al. (2019) conducted a study in which natural selection was learned through
computational thinking using an “unplugged” design method, meaning students used hand-
written “computational” explanations. Such thinking might be considered simple because
computational tools were not considered. Students performed all components without tech-
nology. It was identified that abstractions associated with natural selection can be “extracted”
from the computer, while still allowing students to emphasize the scientific process. This
unplugged version was performed because students did not require access to a computer, nor
did they need previous knowledge of coding. The results of the study indicated knowledge
transfer of natural selection across contexts, and it reduced student misconception on the topic.
It is reasonable to hypothesize that “re-plugging” and incorporating additional computational
components in a similar study might result in greater knowledge gains.

3.2 Distinct Characteristics of Computational Thinking

Scientific thinking alone does not necessarily involve computational thinking. Computation is
the descriptive word, computational tasks are the actual acts performed by students, and
computational technologies are the (usually computer) programs that allow for students to
perform computational thinking. Therefore, many aspects of scientific thought, such as
creativity and critique, often fall outside of the idea of computational thinking during assess-
ment (Grover and Pea 2013).

Computational thinking parallels computational science just as scientific thinking parallels
science content. As shown in Table 1, computational thinking in the context of science
learning is at the intersection of computer science, mathematics, and a specific science
discipline. Computer science relates specifically to information sciences and associated tech-
nologies. Applied mathematics includes numerical models and statistics. Science disciplines
involve knowledge and epistemic stances of a particular community of research and practice
(e.g., biology, physics, or chemistry). When scientists use computational thinking, they apply
computation, including information technologies, programed steps, and algorithms to conduct
observations, collect data, generate lines of evidence, and construct valid explanations about
phenomena.

Table 1 Computational science components and associated domains and student skills

Information science Mathematics Scientific discipline

Fields and examples Computer science,
data structures,
and information
technology

Statistics, logarithms,
graphs, and variables

Biology*, chemistry,
physics,
marine science,
medicine,
and physiology

Student learned
skills

Data structures, refinement,
appropriate programs
to use, computer
languages,
computer theory, and
development of data

Relationship of input and
output, applied
mathematics,
appropriate
representations,
and modeling

Content from discipline,
questions posed from
discipline, applied theory
from discipline, and
appropriate selection of
context from discipline

Note: Biology is our specific discipline of interest
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In terms of a science learning progression, computational thinking would involve a
students’ understanding and application of input, integration, output, and feedback based on
sets of questions and problems within specific scientific domains. Applied mathematical
practices, such as algorithms and statistics, would also be crucial to developing and under-
standing concepts within domains at appropriate ability levels. Therefore, computational
thinking would involve the knowledge and application of appropriate tools that merge the
mathematical aspects and computational tools to ultimately display, revise, and become
immersed within (scientific) content-specific models. Merging these educational aspects for
the purpose of gaining knowledge is the type of higher level learning that is expected of
professionals within the field of biology; we propose this is also beneficial for biology
students. For example, under the context of input, scientists often think about how and where
they might obtain their data (e.g., from a database, simulations, or the environment), and how
they might format and store these data. Under the context of integration, scientists reason about
variable relations and the appropriate tools for modeling these relations (e.g., interface-friendly
tools or hard coding). Knowledge of and classroom participation in these types of NOS
processes may potential facilitate students’ biological understanding (NGSS Lead States
2013).

Student understanding of the most efficient practices and specific programs associated with
their scientific practices is a key component in learning through computation. A student may
model a scientific phenomenon using these aspects of computation; however, these aspects are
distinct from modeling. Computation allows students’ models to be dynamic, changing, and
emergent. Computation may be in the form of a model, but not all computations are forms of
models.

3.3 NGSS Computational Thinking: Practice 5

Because the NGSS has incorporated computational thinking into its core practices, Weintrop et
al. (2016) provided four categories including data practices, modeling and simulation prac-
tices, computational problem solving practices, and system thinking practices as essential
components of computational integration for science curriculums. This type of thinking should
be woven throughout mathematics and science practices due to increased demand of technol-
ogy education and the interdisciplinary benefits that may be associated with domain emphasis
(Wing 2006). Thus far, there are no examples of disciplinary content paralleled with compu-
tational components as a progression with increasing complexity.

The NGSS states that computation is a fundamental tool for science, engineering, and
mathematics learning in order to represent physical variables, recognize, express, and apply
their relationships across levels. According to the reasoning laid out in the NGSS framework
(National Research Council 2012), computational thinking in primary school may be rudi-
mentary but would still build on students’ prior experience and allow students to understand
that mathematics may be used to describe the natural world. At this level, students are counting
and using patterns, while also designing simple graphs and alternate solutions to a problem. At
the elementary level, students are using computation and mathematics to analyze data and
compare alternative design solutions. Students are also expected to organize data sets to
understand patterns and relationships. Computation may be used to describe, measure, esti-
mate, or graph scientific questions or problems while incorporating simple algorithms.

At the middle school level, students move to larger sets of data and use this data to support
explanations and arguments. Students should be using digital tools to identify trends and
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support scientific conclusions. Students may be able to create algorithms to solve or design
solutions. At the high school level, students should be revamping various types of functions
and computational tools for statistical analysis to model data. Simple simulations are created
and used based on mathematical models or assumptions. Students should be revising or
designing models that represent scientific processes or systems. Students should be comparing
their models to the real world and what is known about their phenomenon (NGSS Lead States
2013). The NGSS expects a gradual and achievable sequence of objectives (as listed above)
through a series of events as students navigate through mathematical and computational
thinking; however, the description of application as provided by the NGSS is vague.

Basic algorithms and equations are more often introduced in physics and chemistry courses
when compared to biology (Gobert and Buckley 2000). Activities that occur in these physical
science classrooms may present mathematical practices and concepts plainly to students,
lending to more straight forward infusion of computational thinking in these areas. Founda-
tional topics of biology are rarely presented to students within integrated mathematical
contexts. Rather, biology is more often presented as a narrative via a series of worded phrases,
rules, and/or conditions that students must memorize (Gross 2004). For example, in physics,
teachers often use a mathematical equation to represent Newton’s Second Law of Motion.
Further, in many science classrooms, regardless of the domain, teachers may integrate com-
putational thinking through the context of interface-friendly tasks and games. These friendly
and gamified tasks remove the need for coding, which may limit the degree and depth of
students’ computational thinking (Grover 2011). Although there may advantages to these, such
friendly interfaces and games are not widely used by biologists when conducting scientific
investigations. Our proposed learning progression accommodates simpler interfaces, but also
provides a richer context of and increasing complexity for computational thinking (Guo et al.
2016).

3.4 Computational Thinking to Support Biology Evolution Learning

There is an important relationship between scientific knowledge, the learning of science, and
pedagogy (Driver et al. 1994). Adapting these NOS practices to classrooms provide benefits of
authenticity for science learning, and this includes techniques, attitudes, and social interactions.
Vygotsky’s Social Constructivist theory (1962) states that knowledge is co-constructed and it
is imperative that individuals learn from each other in a way that increased social engagement
(Sinatra et al. 2015). Although technology is important for classrooms and integration has been
difficult to incorporate in practice, it allows students to become active learners (while using
skills that are interactive contemporary and relevant; Edelson 1998).

Some complex systems are integrated into the life science curriculum such as evolution,
equilibrium, and homeostasis, but the overall theme that conjoins these ideas has not been
developed. There are methods (e.g., agent-based modeling, information flows, system envi-
ronment interaction, developmental trajectories, self-organization) which allow for both
domain-based qualitative reasoning and quantitative modeling. The gaps in the curriculum—
which may be due to inherent lack of computational implementation—do not allow students to
cognitively bridge between separate curricular elements and prevents a conceptual framework
of coherence. Complex system perspectives that may be explored through computational
modeling and network analysis provide new methods and insights for learning science
research. This research may potentially extend theory in the learning sciences through
computational modeling of systems for learners and educators. Computation has the ability
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to enhance learning science research involving micro- and macro-levels of cognitive learning
(Jacobson and Wilensky 2006).

The study of complex systems in association with computational technologies allow
researchers to study aspects of the world in which structure and order may coexist at many
different scales of time, space, and organization. These ideas are not limited to the sciences and
are being integrated into other professions, such as engineering, medicine, finance, and law.
Such widespread applicability further supports that integration of computation thinking into
domain learning. For example, from the biological perspective, interdependence and coevo-
lution with emergent patterns formed by self-organization are fundamental concepts to biology
that are not frequently practiced by students (Jacobson and Wilensky 2006).

One of the best ways to represent the concepts, intricacies, and complexities of biological
evolution is through computation due to its robustness and disguised simplicity (Toffoli 2004).
In short, computational processes have the ability to stand unaffected although input variables
may change. This implies that the computational output may be very different from the input
although the code is relatively straight forward for users (which promotes various degrees of
complexity for users [students]). For example, a simple population growth rate formula
consisting of a few variables may be used to re-inform itself through proper implementation
of coding and biological principles to develop a vast display simulating multiple generations of
associated evolutionary changes (there are various avenues this can be implemented using
computation). Another examples are the changes within representative strings of letters,
including A’s, T’s, G’s, and C’s, corresponding to the nucleotide sequences (adenine, thymine,
guanine, and cytosine) found within the genome of an organism (which may be generated by
users [i.e., students] or found in a database).

These sequences (from the previous examples) may become computationally modified
through a very simple “random” function via simulated generations to display a quantitative
analysis of natural genetic mutations found in nature. The mathematics behind the random
function is hidden, as it takes a value (x) as defined by the user (i.e., students) and multiplies
this x value by “rand(x)” to provide a totally random output value that differs for each iteration.
In turn, these sequences may further be translated into the respective proteins and/or altered
and potentially displayed as defective proteins based on the random mutations that would
occur in nature. Students could use simple compare functions to read through A, T, G, and C
nucleotide sequences of various organisms to develop a broad, yet accurate evolutionary
relationships in the form of phylogenetic trees. Educators could use scaffolding and appropri-
ate differentiation with the assistance of our learning progression to determine appropriate
classroom practices based on the biological examples above. For example, if students initially
lack coding skills, they can perform the activity using excel or google sheets (simple) versus
software such as the R stats package (a free coding program, which naturally lends toward
more complexity).

Modeling is an important aspect of computation and integrating this practice has been very
difficult in classrooms (Lehrer and Schauble 2006). Students can start practicing computation-
al thinking in the years prior to kindergarten because computational modeling involves a
complex form of epistemology that must be developed early on in student careers (in order for
them to properly inquire about natural systems later on in their education). Models that work
best for students are the type in which they can see the direct relationship between the natural
world (e.g., as in modeling a compost pile), and students tend to find these types most relatable
and easiest to understand (Krajcik 2012). Therefore, students can use computation to supple-
ment these types of models. Professional scientists use models and computational thinking at
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all levels when solving problems, so when an idea translates to the classroom, it should result
in a variety of representations and models that can be used to build layers of description, and
potentially display different aspects of represented phenomena (Toffoli 2004). Computational
representations at different levels should relate to each other in ways that students can
understand so their ideas circulate and interlock, resulting in a system that enhances student
understanding of the natural world (Lehrer and Schauble 2006).

Students at all levels have difficulty working at the intersection of mathematics, computer
science, and a scientific discipline; these aspects are what prevent students from performing
genuine research in the ways scientists do. When life science students conduct genuine
research (usually through working on a portion of a mentor’s larger research project as a
graduate student), it is usually the first time they are faced with the task of developing their
own questions while concurrently developing mechanisms using computation (e.g., coupling
input with statistics; Ryder et al. 1999). However, inquiry-based research projects and other
activities that develop the foundation for students to start developing these basic scientific
skills can be executed at the middle and high school levels (NGSS Lead States 2013). Learning
and doing cannot really be separated when talking about scientific practices. This implies that
students should learn to do something, while using appropriate knowledge and tools to meet
learning objectives (Bybee 2011).

In a study using NetLogo, Wilensky and Reisman (2006) found that students were able to
make sense of problems and develop explanatory models on their own through computational
processes. During programming, students tended to go back and forth between new hypoth-
eses and researching existing solutions. For example, Talia (pseudonym)—a student who
participated in the study—frequently used a computational model is to simulate predator and
prey relatonships across generations. Talia developed the idea that many model components
were random, which is very difficult for students to understand on their own without using a
computational tool. As her models did not match what would occur in nature, she continued to
change her parameters until the output matched what would make sense to her working
knowledge. As she set out to correct her model, she underwent the process of debugging
and sought out literature that was associated with her phenomenon.

Paul (pseudonym), another student in Wilensky and Reisman’s (2006) NetLogo study, used
the program to study the pattern of flashes displayed by a specific species of firefly. In nature,
there are rules and patterns that alter the flashing patterns of these insects. Paul made initial
assumptions, such as the fact that all fireflies follow the same rules or that the fireflies’
mechanism becomes synchronized upon coming into contact with other fireflies. As his
research continued, he developed a decision-making process and unique tools that merged
identifying relevant content knowledge with computational thinking (via embodiment). Paul
actually developed new knowledge from his model that contributed directly to the field, and
this information would have been nearly impossible to discover through field work alone. In
many cases (such as Talia or Paul’s), students start to think differently about biological rules
and phenomena when using computational thinking. Their interaction with the NOS through
the use of this program supported biological evolution learning through computation.

3.5 The Relationship between Biological Evolution, Levels of Organization
and Computation

As students work with computational programs, they may learn to set up problems and relate
their working knowledge with tools that they have available. They may better lay out their
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problem at hand and intuitively select programs that may maximize input or have the right
capacity for a working statistical analysis. Students may select which programs work well
together to select the most appropriate display output for the intended audience
(Chandrasekharan and Nersessian 2015). The only way students may understand the best
practices is by working with these specific programs, and eventually learning these new tools
becomes easier. Students may start to think about content knowledge and data as sharing a
relationship that is more intimate and interrelated since output may be looped back and used as
new input within their systems (Jacobson and Wilensky 2006). Students may develop exam-
ples at all biological levels from computational scratch which would also enforce or challenge
their working content knowledge in biology. The various levels of biological organization,
relevant examples, and computational aspects are displayed in Table 2.

Evolutionary thinking is required as early as in the middle school in order for students to
properly model these biological systems later on in their educational careers. Lehrer and
Schauble (2006) claim that building blocks of evolution understanding include variability,
change, and ecosystems. Variability distinguishes between directed and random variation, and
students must understand the relationship between the change in organisms, populations, and
ecosystems and discover ways of describing interactions between organisms. Understanding
involves coordinating change at all levels of biological organization and relating this to how it
works in ecosystems. Lehrer and Schauble claim that modeling and thinking required for
modeling allow students to reason more deeply about evolutionary questions. Ideally by the
time students reach high school, they have worked through the process required for complex
evolutionary thinking through the process of various activities (such as modeling) as displayed
in our proposed learning progression.

Forrest claimed (1990) that emergent computation requires the explicit and the emergent
levels of a system to be developed and displayed through computation and information that is
not present at lower levels will exist at the level of collective activities. There must be a
collection of agents and interactions between agents, and these agents must follow instructions
which have directions at the macroscopic level, parallelling most biological systems. If the
phenomenon being observed is also computation itself, there may be feedback between the
levels. This idea is stressed in computational learning and as a principle in biology, especially
in terms of evolution. Three themes of this phenomena are self organization, collective
phenomena, and cooperative behavior (Forrest 1990). The sum of the parts within a system
is greater than individual parts, a common theme in biology as well as computation.

Biological functions are a result of mechanisms that occur at various scales and biological
levels of organization (Campbell et al. 2000) as seen in Table 2. Modeling and simulations are
computational tools necessary for describing, predicting, and understanding these mechanisms
in a quantitative and integrative way. Dada and Mendes claimed (2011) that understanding
biological functions should be aided by computational thinking and encompass and span
various spatial and temporal scales. Understanding systems in biology is not possible without
using computational technology and looking at various levels of biology. These scales range
from molecules, genes, and proteins through to cells, tissues, organs, organisms, and the
interactions with other organisms and the environment (Guo et al. 2016). Time scales may
range from microsecond to hundreds of thousands of years. In order to understand behavior of
a system, it requires various interactions that occur on these diverse scales. Exploration of
these items occur now at the educational and professional level, but the need is growing
exponentially in the field of biology especially for research. Researchers may explore a top
down or bottom up approach and approaches may be discrete or continuous. There are general
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computer languages and platforms that researchers may use, or explicit programs tailored for
specific content-based computational tasks. Regardless of the approach, in order to explore
systems within biology, all levels may be explored and integrated through computation (Dada
et al. 2011).

Of the few documented interventions that combine evolution learning with computational
thinking, there are none that span between the organizational levels of biology. Guo et al.
(2016) conducted a study involving high school students in which agent based software was
used to simulate frog population changes over time. Although the students did make knowl-
edge gains in evolution, additional instruction and computational tools that would allow

Table 2 Levels of biological organization and applicable computational representations

Level of biological
organization

Broad examples Applicable examples

Biosphere Earth -Ecosystem interactions
-Ecosystem modeling
-Global nutrient and energy flow

Ecosystem Estuary, open ocean,
deciduous forest, and
tundra

-Environmental influence on biota at various levels
-Ecosystem modeling (nutrients & energy)

Community Grassland community, coral
community, pond
community, and
gastrointestinal
microbiota

-Community structure and changes
-Interspecies interactions: i.e., competition
-Communal influence on organisms

Population Honeybee population,
osprey population, and
seagrass population

-Variation
-Interspecies interactions: i.e., competition
-Growth, decline, and carrying capacity
-Genetic (allele) changes within populations

Organism Pitch pine tree, horseshoe
crab, blue jay, and diatom

-Competition
-Reproduction
-Energy conservation due to processes associated with

homeostasis
Tissues and organs Muscle tissue, heart, and

osteons (bone tissue)
-Similarities and differences within and among organisms

hold evolutionary explanations (vestigial structures,
homologous structures)

-Exploring explanations for variations within populations
and between species based on environment

Organelles and cells Nucleus, mitochondria,
chloroplast, flagella,
neurons, and osteocytes

-Cell interactions within and between organisms operating
under evolutionary principles

-Organelle structure operating under energy conservation
principles

-Cell Structure operates under energy conservation
-Cellular evolutionary differences and similarities between

organisms
Atoms, Molecules

and
macromolecules

Na+, Cl+, H2O, CO2,
protein, lipids, DNA,
RNA, and carbohydrates
(sugars)

-Diffusion, transport, and molecule interaction working
under energy conservation principles and availability
within environment.

-Similarities and differences between organisms
-Production, inhibition, blockage, and development of

systems using specific compounds based on
environmental pressures

-Variation at this level (gene or protein)
-Mutations occur at this level

Note: Examples of levels of biological organization and evolutionary (including: unity and diversity) principles
associated that can be explored computationally in learning progression
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students to make better connections between micro- and macro-levels of biology were required
(Guo et al. 2016). Students have trouble understanding the connections between these levels;
the process of evolution, which operates at and between these scales, presents a promising
opportunity for student exploration of these level connections. At any given time, topics in
biology may be taught at a single level (molecular, cellular, anatomic, organismic, or ecolog-
ical level) and ideas often become isolated from one another.

Making various biological level connections and connections between the micro- and
macro-levels contribute significantly to biological evolution learning. This may be because
in biological systems, the explanations of mechanisms of phenomena (such as biological
evolution) apparent at one scale often lie at a different scale (Parker et al. 2012). Students’
difficulties in making micro- to macro-scale connections is sometimes referred to as “slippage
between levels” (or disconnects between levels) and is also associated with fragmented and
compartmentalized knowledge (Brown and Schwartz 2009). This problem has not received
much attention in the literature on evolution education (Jördens et al. 2016). Fluidity between
these levels allows students to reason across them and contribute to biological literacy (Brown
and Schwartz 2009). There are five chief strategies that encourage thinking across levels in
biology (Parker et al. 2012), including (a) distinguishing different levels of organization, (b)
interrelating concepts at the same level of organization (horizontal coherence), (c) interrelating
concepts at different levels of organization (vertical coherence), (d) thinking back and forth
between levels (yo-yo thinking), and (e) meta-reflecting about the question of which levels
have been transcended (Jördens et al. 2016). Connecting macro- and micro-level connections
may be important; however, there is a gap in research explicitly identifying multiple levels
within the micro- and macro-level ranges and considering biological connections in the ways
we have defined them (Jördens et al. 2016). And, to our knowledge, none have used
computational thinking to facilitate making these connections.

Cross-level understandings may be explored through embodied experiences while using
computational thinking. For example, as students better understand behavior of molecules, it
allows them to get a better grasp on cellular processes, or as students develop an understanding
of agent/organism behaviors, it may allow them to better explain ecosystem processes. These
types of relationships would not only emphasize each topic, but should allow students to better
understand biology as a whole (Jacobson andWilensky 2006). It is of benefit for all students to
have the ability to think like scientists and use tools that promote scientific inquiry (Wilensky
and Reisman 2006). Even more so, computational thinking is not limited to science; compu-
tational skills and specific software programs are increasingly used by professionals across
disciplines and within associated careers.

3.6 Computational Thinking Becomes a Working Tool for Students

Computational thinking and learning is encouraged for student access in STEM careers
because it becomes a working tool in problem solving that may also be applied in other
domains. Computational experiences are becoming increasingly available to students due to
reduced prices of technology and due to easier access to data and improved methods of data
streaming during experiments (Jacobson and Wilensky 2006). Realistic ways of doing science
in the field involve both direct observations and computational modeling practices. It is
becoming increasingly difficult for students to distinguish models and simulations from
observations. Simulation translates everything including algorithms into digital information
and uses computation to construct any object, even if it is an abstraction (Lenhard 2010). This
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is due to the fact that many models have controlled sensors or external devices that stream and
interpret live data. Practicing scientists have opportunities to use these technologies, and there
is a need to understand how students and teachers may best learn to use them in practice.

These complex system informatics and representation tools allow student development in
thinking about, interpreting, and representing data through relevant complex systems, con-
cepts, and principles, such as those associated with evolution. Designing learning environ-
ments and selecting appropriate tools that make organizing conceptual framework explicit to
students is also important for instructors (Jacobson and Wilensky 2006). In short, students
should be able to distinguish between data, and merge ideas and tools associated with
computation, to concurrently allow them to thrive within content areas (Kong and Abelson
2019).

This emphasis of student awareness with respect to computation and abstraction is a
specific example and extension of Baudrillard’s (1994) book that described simulacra and
simulation, as well as the relations between reality, symbols, and society. This book was one of
the inspirations for the famous science fiction movie associated with computer science and
programming, The Matrix (Wachowski et al. 1999), where many of the characters unknow-
ingly start their lives immersed in a computational abstraction of reality (Tamatea 2019).
Baudrillard’s (1994) concern was that individuals within a society would not be able to
understand or know the difference between truth, reality, and simulation; in other words, the
abstraction would be indistinguishable from reality. Copies of copies of copies of original
information would be the entity that reaches individuals and that the hyper-real rather than the
real would inform discussions. For example, an individual may have never been to France;
however, they know it exists due to news stories, pictures, maps, and personal accounts. What
they know of the country is not based on personal observations, but is informed solely by
societal constructs and abstractions. This idea may be similar to the “realness” of a scientific
concept, such as the idea of a cell and how students may or may not understand and explore it.
One of the criticisms of The Matrix film is that the select few main characters know when they
are in the simulated world and when they are in the real world. The characters in the film use
programming as a tool to better navigate and understand the simulation, and this idea is
synonymous with technology infiltrating the sciences and science learning. Baudrillard (1994)
states that abstraction will eventually be the only means through which we access the real
because we to prefer the map of France (which is an abstraction) over the territory (which is
real; Tamatea 2019). Learning coding seems to be one effective way in which we can engage
with abstractions.

Students should be able to make distinctions between what they experience and what is
constructed in science and simulations; without building these tools (i.e., through computa-
tional thinking), students may have difficulty distinguishing what is scientifically valid.
Computational thinking practices would allow students to get a better understanding of the
development of scientific simulations and representations (even though they might not fully
understand them). Pioneer science, hypothetical experiments, in situ experiments, and com-
putational models should be distinguishable for students. In today’s world, understanding
information science and respective abstractions as it relates to science such as biology is
extremely important because of the radical changes information science has already made (and
will likely continue to make) in our society (Tamatea 2019).

Children are exposed to digital technologies at an early age, but children and adults alike
often do not understand how these technologies work computationally. For example, most
students know how to perform a Google search, but may not understand the computational
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mechanism of the search (Alexander 2018). These searches involve selection and ranking of
both valid and invalid information found on the internet, and without some knowledge of these
algorithmic processes, some students may not successfully distinguish between credible
information sources and plausible explanations (Sinatra and Lombardi 2020). In classroom
biology learning, integrating computational thinking, and evolution—via our proposed learn-
ing progressions—may address, in some small way, the potential threat of disinformation
through increased scientific literacy.

4 A Learning Progression for Computational Thinking in Evolution

Learning progressions (LPs) vary across the educational literature; however, Berland and
McNeill (2010) describes three explicit components of LPs. The initial component (1) is
described as a developmental progression for how understanding develops, the second com-
ponent (2) is described as a progression in increasing levels of complexity of the disciplinary
knowledge and practices, and the third component (3) is described as using pathways to
support student learning. Analysis of disciplinary knowledge is essential for identifying the big
ideas in science such as biological evolution, which is the primary focus of learning progres-
sions. Our specific LP, called learning biological evolution through computational thinking
(LBECT), is modified from Berland and McNeill (2010) framework, which was grounded in
both science studies of disciplinary practice and research on student learning. LBECT-LP
focuses on merging dominant ideas in biological evolution and computational thinking
practices. Our goal is to assist practitioners in increasing computational thinking in classrooms;
therefore, the LBECT-LP is flexible. Educators must consider where they themselves, their
students, and their districts are realistically situated in terms of practical application when
considering how to incorporate the LBECT-LP.

5 Instructional Context, Computational Product, and Computational
Process

As shown in Table 3, the LBECT-LP has three dimensions: (a) instructional context (i.e.,
educator role), (b) computational process (i.e., student activities), and (c) computational
product (i.e., student artifacts). These three dimensions can be either simple, developing, or
complex depending upon the level and progression of the student. Each of the three compo-
nents of the learning progression may be evaluated per student as they show evidence from the
simple, developing, or complex categories. The LBECT-LP includes various components,
including student engagement by considering multiple student perspectives, constructive
group interaction, and complex thought processes to integrate multiple pieces of information
(i.e., computational process). These components continually align with learning biological
evolution through computation across grade levels. Students have some idea of what biological
evolution is; however, their elementary viewpoints or misconceptions may contribute to their
multiple perspectives. Viewing evolution at various time scales and levels of organization
provides various alternate perspectives. Computation activities may also be highly interactive
and involve multiple smaller pieces of evidence to construct the larger idea if properly
scaffolded (i.e., instructional context).
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Table 3 specifically represents these components through students’ classroom behaviors
(i.e., computational process) that promote learning about biological evolution. For example,
the data used in the computational process in the LBECT-LP may be provided by the teacher
or developed by the student through the computational process, depending on the level of the
student (i.e., instructional context). Students may produce various complex outputs, which
they then will have to reasonably evaluate. Students will learn to make arguments that support
their claims through the computational process. These claims will involve decision making
regarding the data, computational reasoning, and the principles of evolution as their under-
standing improves within their domain area. Instructors can develop differentiated activities,
rubrics, and assignments based on these three dimensions (i.e., instructional context). The
NGSS standards can be appropriately assigned by the teacher depending on grade level using
our learning progression.

As students progress from simple toward complex, questions initially provided through
instruction will be closely defined with limited sets of answers and data sets will be provided
(Table 3). Eventually, little scaffolding is required and students must determine which data
are appropriate and how to select their data using computational reasoning. The simple
computational product is not necessarily represented efficiently or appropriately, and students
have difficulty describing their computational process. As student abilities increase in com-
plexity, their representations take various forms and become appropriate for the design at hand.
As students move toward a complex computational process, they are able to describe and
justify input, manipulate proper modification, or synthesize their own data. Students eventually
develop and justify their mathematical representations and integrations. At the highest levels of
complexity students may develop new computational tools (i.e., computational products),
representations, or challenge domain-specific content and ideas.

Input, integration, output, and feedback are integral components of computation as
displayed in Table 4. As students develop their computational process and product through
instruction (Table 3), they will need to think more specifically about their computation. As
students integrate content knowledge into their computational processes and products, they
will not only be developing their content knowledge and computational skills, but they will
also be improving their communication skills (regarding computation).

Knowledge and communication skills will be developed through students experiencing this
computational process and developing computational products. Specific computational com-
ponent (input, integration, output, and feedback) examples are directly related to explicit
scientific and computational knowledge and communication skills as displayed by specific
student roles in Table 4. For example, as students decide what information is important and
relevant to their scientific discipline to solve problems related to the phenomena at hand, they
are contributing to their working knowledge associated with the scientific discipline. As
students decide what equations to use and how they are related, they are further building upon
their scientific knowledge. As they decide which information is important to display as output,
they are evaluating which components of their scientific system is relevant. As students decide
how to reintegrate information to inform their system, they are further engaging in making
associations between working scientific knowledge within their content area.

As students are contributing to their scientific knowledge through these aspects of compu-
tation, they are also developing their computational knowledge as displayed in Table 4. As
students decide which scientific input to use, they are better understanding how to define
variables, a crucial component in computation. While students write their programs in
computer code using relevant scientific information, they learn additional logical
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computational skills such as loops and if-then statements. When students display their output,
they are learning which tools are available to visualize various representations and decide
which is most relevant, another essential component of computation and communication. As
students re-inform their models, they are practicing revision, while ensuring their models are
valid and robust, additional critical components of computation.

Various aspects of communication are a critical component of the learning process, but also
a component of the computational and scientific learning aspect as displayed in Table 4. As
students input their information and integrate their code, pseudocode may be used. Pseudocode
is a text written into computer code that is not processed by the computer and only used as
notes or a means to communicate with others reading their code. As students decide which
information to display in their pseudocode, it dictates how many others may use their written
script. When students decide how their code and packages run, it dictates how user friendly it
is for others and essentially who can viably use their work.

As students progress from simple toward complex in the learning progression, they will
develop advancing understanding of scientific knowledge and computational knowledge.
Students will start with simple scientific information as well as simple types of computation.
Instructors can scaffold this progression for students (instructional context). For example, they
may provide an interface heavy program for students exhibiting simple computation. The most
developed types of scientific understanding occur as students start to make connections within
and between their scientific domains, as well as when students design and conduct their own
research through asking their own questions in the context of gaps in scientific knowledge. The
most advanced types of computational knowledge include efficient means of writing raw
computer code and developing packages and software in various computer languages. Al-
though these are the most complex aspects of the learning progression, simple computation
may involve programs with user friendly interfaces and are required for initial incorporation of
the LP (e.g., MS excel, scratch or app inventor).

6 Construct Maps: Biological Unity and Biological Diversity

To break down the LBECT-LP further, we developed four construct maps representing
student learning of biological evolution through computational thinking. Shown in Figs. 1,
2, 3, and 4, these maps represent two fundamentally important ideas for learning about
biological evolution: unity (Figs. 1 and 2) and diversity (Figs. 3 and 4). We developed these
construct maps by adapting Plummer and Krajcik (2010) LP for lunar motion and spatial
reasoning. These maps reveal a structured process toward a more complete student under-
standing of evolution. Based on Plummer (2012), the LP shown in each map is dependent
upon the instructional design that supports student progress toward understanding. The LP
presents cognitive challenges as presented by the lower levels of understanding evolution
as students’ progress to deeper levels of understanding (Plummer and Krajcik 2010). This
idea of progression is accompanied and supported by computational thinking and integrates
embodiment, which can further enhance learning.

Each construct map has the scientific explanation for separate biological phenomenon as
the top anchor. These construct maps can be staked or aligned to create a full learning
progression toward a core idea and biological evolution. For each of the two topics (unity
and diversity), there are three integrated elements of the LP: the model of cognition, instruc-
tional design, and assessment (Plummer and Krajcik 2010). As students gain scientific
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Level 5
Accurately explains evolution through the unity of life.  Apparent similarities 

between organisms is described through the evolutionary process using 

multiple lines of evidence.

Level 4
Construct applications to support explanations as to how a trait may change 

over time leading to longer term changes in biological systems based on the 

idea that life shares a common ancestor

Level 3
Constructs explanations based on evidence that the process of evolution 

results from 4 factors: the potential for a species to increase in number, the 

heritable genetic variation of individuals in a species due to mutation, 

competition for limited resources and the proliferation of those organisms that 

are better suited for their environment

Level 2
Constructs evidence that changes in environmental conditions result in: 

increases in some individuals of a species, emergence of new species over 

time and the extinction of others

Level 1
Constructs explanations based on evidence for how natural selection leads to 

evolution of populations from a common ancestor

Fig. 1 Student understanding of evolution via unity at increasing complexity

Goal: Increasingly engaged in computation as a multistep process of manipulating computational information.  

Students should be relating biological concepts associated with unity at various temporal and organizational scales 

to describe the evolutionary process using computational tools. 

Considers how evolution works 

at different time scales and 

levels of biological organization.  

The common relationship 

between organisms at these 

levels can be described through 

methods of computational 

thinking. 

Common ancestor-based frame of 

reference: increasing 

sophistication in understanding 

the interactions that take place in 

biological systems over time 

based on the idea of a common 

ancestor

Constructing 

explanations that 

connect life 

across time 

scales and 

organizational 

levels. 

Increasingly 

sophisticated use 

of embodiment 

allows students 

to understand and 

distinguish how 

fundamental 

units in biology 

will interact at 

the various levels 

and time scales.  

Students can 

relate these ideas 

back to common 

ancestry.

Fig. 2 Computational thinking associated with unity progress. Students should be increasingly engaged in
computation as a multi-step process of manipulating evolutionary information and embodiment. Students will
be exploring and producing evidence for the unity of life as explained by the evolutionary process through
computation

Learning Evolution Through Computation 1061



knowledge through learning the NOS and applying computational thinking, emerging ideas,
capacities for computation, alternative representations, and causal reasoning. Students should
be engaged in higher ways of knowing, learning, and thinking about ideas, evidence, and
claims associated with evolution. As the LPs start earlier in a student’s education, the
communication, thought processes, and computational abilities will become more advanced
in association with biology (Duschl et al. 2011).

Conceptual change about evolution would be facilitated by computational reasoning
because computational thinking will increase students’ cognitive engagement (Dole and
Sinatra 1998). Of the various factors that allow conceptual change associated with evolution,
embodiment, is key. Embodiment is achieved through the necessary components of compu-
tational thinking as students put themselves within computational models to think how the
model agents and components of the model would interact (Wilensky and Reisman 2006). For
example, in the Dole and Sinatra (1998) conceptual change framework, embodiment could
promote a higher degree of cognitive engagement through greater elaborative connections and
more metacognitive reflection. Computational thinking and its facilitated embodiment relates
to the importance of how evolution spans across temporal and organizational levels of biology,
while it also parallels emergent computation through learning.

Pathways to really understand evolution become evident through the learning progression
that includes instructional context, computational product, and computational process, as
paralleled by appropriate construct maps displaying the process of unity and diversity of life.
Each construct has different component of evolution at top of anchor can be stacked or aligned
to focus on that single idea (Wilson 2009). The bottom anchor is the evidence and learning
progress of students.

Level 5
Accurately explains evolution through the diversity of life.  Apparent 

differences between organisms is described through the evolutionary 

process using multiple lines of evidence.

Level 4
Construct applications to support explanations as to how a trait may 

change over time leading to longer term changes in biological systems

Level 3
Constructs explanations based on evidence that the process of 

evolution results from 4 factors: the potential for a species to increase 

in number, the heritable genetic variation of individuals in a species 

due to mutation, competition for limited resources and the 

proliferation of those organisms that are better suited for their 

environment

Level 2
Constructs evidence that changes in environmental conditions result 

in: increases in some individuals of a species, emergence of new 

species over time and the extinction of others

Level 1
Constructs explanations based on evidence for how natural selection 

leads to evolution of populations

Fig. 3 Student understanding of evolution via diversity at increasing complexity
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Two major ideas unity and diversity are displayed as construct maps in Figs. 1, 2, 3, and 4.
The understanding of evolution through unity and diversity each represent a different map and
each has levels 1–5 which correlate with NGSS standards. The corresponding table displays
how computation will be used to support the learning progression of evolution. The major
difference between unity and diversity learning would be that unity focuses on common
ancestry and uses this as a perspective to explore evidence and generate computational
processes; whereas, the diversity component focuses on the diversifying of organisms through
more of a phylogenetic approach or looking at things from a larger environmental aspect.
Aspects of both unity and diversity can view all levels of organization and a variety of time
scales; however, unity would naturally align with smaller levels and diversity at larger levels.
This can and should be done computationally for both unity and diversity, using computation
as a bridge between physical and temporal scales.

6.1 Unity

As students understand evolution through unity, they initially construct explanations based on
the evidence that there is a common ancestor and natural selection drives evolution. Eventu-
ally, students construct evidence that changes in environmental conditions allow for the
increase in some individuals of a species while a decrease might occur in others. Students
will then be able to construct explanations based on evidence that evolution results from
four factors: the potential for species to increase in number, heritable genetic information is

Goal: Increasingly engaged in computation as a multistep process of manipulating computational information.  

Students should be relating biological concepts associated with diversity at various temporal and organizational 

scales to describe the evolutionary process using computational tools. 

Considers how evolution works 

at different time scales and 

levels of biological organization.  

The relationship between the 

diversity of organisms at these 

levels can be described through 

methods of computational 

thinking. 

Biological ‘unit’ based frame of 

reference: increasing 

sophistication in understanding 

the interactions that take place in 

biological systems over time.

Constructing 

explanations that 

connect life across time 

scales and 

organizational levels. 

Increasingly 

sophisticated use of 

embodiment allows 

students to understand 

and distinguish how 

fundamental units in 

biology will interact at 

the various levels and 

time scales.

Fig. 4 Computational thinking associated with diversity progress. Students should be increasingly engaged in
computation as a multi-step process of manipulating evolutionary information. Students will be exploring and
producing evidence for the diversity of life as explained by the evolutionary process through computation
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required, variation is random, competition is required, and those better suited to their envi-
ronment have the increased ability to reproduce. Eventually, students may develop applica-
tions to support explanations as to how a trait may change over time leading to larger changes
in biological systems, may describe the unity of life through similarities between organisms,
and use multiple lines of evidence in their explanations.

As students initially do this, a common ancestor-based frame of reference may be. As
increasing sophistication is achieved, students may understand the biological-level interactions
that take place based on the idea of a common ancestor. For example, at a greater level of
sophistication, students may be able to use tools such as the National Center for Biotechnology
Information (https://www.ncbi.nlm.nih.gov/) and explore evolutionary relationships based on
molecular evidence such as DNA, RNA, and protein sequencing. Students may construct
explanations that connect life across time scales and organizational levels with an increasingly
sophisticated use of embodiment that allow them to understand and distinguish how
fundamental units in biology interact at various organizational levels and time scales.
Eventually, students may consider how evolution works at these different scales, and
how these levels may be described and explored through methods of computational thinking.

6.2 Diversity

As students learn evolution through diversity, they may construct explanations based on
evidence for how natural selection leads to evolution of populations. They may construct
evidence that changes in environmental conditions, resulting in the increase of some individ-
uals, and evidence on how new species emerge or go extinct over time. For example, students
may explore multiple generation population changes through modification of micro-scale
entities (alleles) with the assistance of computation. They may also construct explanations
based on evidence from the four factors (listed above), and construct explanations to support
how a trait may change over time leading to long-term changes in biological systems and how
apparent differences between organisms may be explained through multiple lines of evidence.

Students may use computational thinking to reason about a biological unit-based frame of
reference. With increased understanding of the interactions between these units, students may
also develop increased understanding of biological systems over time. Students may use
embodiment to understand and distinguish how these fundamental units of biology will
interact at various levels and time scales. These ideas will be achieved through methods of
computational thinking.

7 Computational Lesson Examples

The Advanced Placement (AP) Biology Curriculum as developed by College Board stresses
aspects of computation and modeling reflected by the NGSS. The College Board is the
nonprofit organization that connects high school students toward college success and is
responsible for the development of all AP courses, as well as other tasks such as administration
of the SAT (College Board 2012). The AP biology curriculum also promotes the importance of
understanding evolution, reflecting evolutionary evidence, and relevance within every section.
AP biology courses are thought to be the most complex life science course offered at the high
school level and should prepare students for the scientific thinking required of college students.
Although the AP curriculum stresses that evolution is important in biology learning and
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emphasizes computation to do so, it does not identify how and to what degree the activities
specifically contribute to learning of biological evolution and biology as a whole (Román-
González et al. 2017).

As outlined by the College Board, there are two labs in the AP biology curriculum that
require and emphasize computational thinking in order to display and work through evolu-
tionary content (College Board 2012). When teaching these labs using computational thinking,
instructors would need to structure the lessons with proper scaffolding, providing the appro-
priate amount of materials to facilitate the lesson as appropriate for students (simple, devel-
oping, or complex based on the LBECT-LP), and emphasize the input, integration, output, and
feedback mechanisms for students coupled with appropriate computational activities. In one
lab example, a phylogenetic tree activity is performed. NCBI, a free website (https://www.
ncbi.nlm.nih.gov/), is used in this lab, and has nucleotide (DNA and RNA) and amino acid
sequences for specific proteins and DNA regions from a variety of organisms as discovered by
working scientists. Because DNA and RNA sequences encode for specific proteins, both the
nucleotide and protein sequences may be used for inquiry. Students can search for protein or
DNA sequences for specific known proteins from different organisms. The website has the
ability to match similarities in the sequences and develops phylogenetic trees based on the
similarities between the sequences. Students start to understand the relationship between the
molecular scale sequences and how and why phylogenetic trees are developed based on
evolutionary relationships. Students have the ability to sequence the data in a primitive way
(interface friendly tasks) or using tools that are very robust (raw coding) depending on the level
of student. Students work through exporting information; they frequently inquire about
different levels of organization and the relationship to evolution while developing ways to
navigate this information using computational tools. Students may develop the ability to see
how and why this type of sequencing is most accurate and how it relates to anatomy of
organisms and or other types evolutionary evidence such as embryology or the fossil record.

The Hardy-Weinberg (H-W) lab, another resource in the AP biology lab manual (College
Board 2012), uses a simple equation to display changes in population over time through the
display of allele frequencies in a spreadsheet. In studying this law of genetic equilibrium,
students explore the relationship between evolution and the change in allele frequency by
using a computational model to demonstrate what can happen over many generations. In this
AP biology, lab students develop a specific trait that is represented by alleles: either homozy-
gous dominant, heterozygous, or homozygous recessive. Each of the allele combinations or
genes represents a different physical feature or phenotype that is hypothetical and described by
students. This trait may be indicative of various hypothetical phenotypes such as fur color, ear
shape, and cell structure. Students then develop a method of input, which must involve
incorporation of the Hardy-Weinberg equation to ensure that their program feeds a proper
output. Students color code their work so that they understand and properly display input,
working code, and mathematical equations as well as an output. Their output varies based on
randomness that is built into the model.

These numbers of alleles can be compared to populations in the nature, and it can be
observed if species are undergoing evolution or not. In the case, species are undergoing
evolution, and questions may be asked why (e.g., environmental changes, adaptations, and
human impacts). Students work with the computer programs, such as common spreadsheet
software, in order to develop a model which mimics two successive generations. Students
could design their computational products so that there is a single input value that the rest of
the model runs on. The integration would be the student’s depiction of the Hardy-Weinberg
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equation, and the output would be the new allele frequencies and respective graphs for each
generation. The generations output informs the next generation, and students should recognize
this as the feedback.

Students identify how the Hardy-Weinberg equation relates to population changes. Stu-
dents then are required to modify their population in that a certain “made up” or hypothetical
phenotype (heterozygous for example) has an advantage or disadvantage. Students must then
alter their equations so that a certain phenotype has a, for example, double advantage in
survival or become less advantageous by 50%. Students must then describe how this affects
their populations after a series of generations. Their output from one generation becomes the
input for the next and so on, with graphical output displaying the allele frequency changes over
time. For example, hypothetical homozygous recessive (rr) sea otter individuals have long hair,
and because the hypothetical local environment experienced an average 5° temperature
increase due to a new nuclear power plant, it might result in a 50% loss in the homozygous
recessive otter individuals. Students would then be expected to model how that 50% loss affect
future generations evolutionarily using the appropriate equation and modifications.

Students essentially develop methods to display a series of generations within a population.
As students model their simulated populations based on code, modifications and proper
display they eventually work to generate proper working explanations, which involve multiple
levels of organization as well as a proper understanding of time to explain evolution. These
explanations merge working biological principles with computational principles and the
models may become more advanced as students develop their skills and content knowledge.
Assessment would ideally include computational and biological components and display a
level of simple, developing, and complex as defined by the instructor. Although these labs are
already computational in nature, often instructors become frustrated as the instructions are
vague, and resources are outdated. Issues in assessing and developing these types of activities
are addressed in the next section.

8 Directions for Future Research

An overwhelming gap in research stretches across computational thinking, specifically for
students enrolled in biology courses (Grover 2011). The student-guided construction of
scientific models may lead to internal generation of knowledge and information that contra-
dicts what students currently believe, a necessary component in conceptual change (Sinatra
et al. 2008). Learning about specific controversial topics such as evolution may lead to
conceptual change if common obstacles between conceptual change and evolution are over-
come through computational thinking, contributing to student understanding of biology, and a
more advanced understanding of the NOS. Further, facilitating computational learning prob-
ably requires appropriate scaffolding; however, the best practices for helping students to think
computationally to foster conceptual change and deep learning are unknown.

Although there has been some model-based reasoning research conducted among science
learners at higher educational levels, there is a gap in research about learning evolution through
computation, with virtually no research at the K-12 levels (Jacobson and Wilensky 2006).
There has been some research and investigation on student learning of evolution and biological
systems through agent-based modeling; however, no studies have related computational
thinking and reasoning to learning evolution across scales (Aho 2012), nor have they defined
computational thinking in the ways that we have.
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The proposed framework and learning progression allows for teachers to modify their
current classroom activities in order to make their lessons and instructional units more
computational. We provide this avenue by arranging and outlining ideas for instructional
context (instruction), computational product (artifacts), and student roles (computational
process) within the learning progression. We also provided two example lessons for a biology
classroom that were modified to be more computational from the AP lab manual and included
the respective corresponding aspects of the progression (e.g., simple vs. complex student
roles). We recognize that this idea is novel; therefore, testing of the LBECT-LP (or at least
aspects of it) by the research community is warranted. Such research would include tests of
lessons, instructional units, and assessments based on the LBECT-LP to better understand
impacts on classroom practice and effectiveness.

The learning outcomes, pedagogies, and tools for deeper conceptual understanding and
knowledge transfer for topics associated with evolution are not well known, especially
about how these topics relate to overall biology understanding (Jacobson and Wilensky
2006). There is a definite urgency to incorporate computational thinking practices into
scientific curriculums according to the NGSS; however, the incorporation strategies are vague.
Definitions for computational thinking as applied in classrooms are still unclear. The compu-
tational instructional practices, computational process, and computational products are not well
defined for instructors. We have provided structure for educators through the LBECT-LP,
while still maintaining flexibility so that teachers may modify their lessons as they see
necessary.

It is unclear how to assess computation alone; therefore, assessment of other content
knowledge such as biology while using computation as a learning tool may be better suited
for students and teachers. The development of an assessment for computational skills alone or
the assessment of computation alongside and integrated within content knowledge is necessary
in order to monitor student progress and is essential for continued research. The type of
information that this assessment would measure is still unknown (i.e., computational knowl-
edge and or biological evolution knowledge). There are also no assessment tools that measure
computational skills (in the way we have defined them) as applied across disciplines (Werner
et al. 2012).

Content knowledge, such as biological evolution, may be assessed based on specific skills
that are developed by computation. For example, computational thinking may aid in evolution
learning by facilitating modeling biological process at and between levels of organization.
There are biological evolution assessments that test knowledge at the macro-scale, the micro-
scale, and specific concepts (such as natural selection or phylogenetic tree thinking), but there
are no current assessments which hone in on skills associated with learning evolution between
scales. Based on the LBECT-LP, computational knowledge may be assessed conceptually on
the four computational components: input, integration, output, and feedback. Not only could
students be tested on these four concepts, but can also be assessed using written components
which integrate these four components with the content knowledge. For example, students
may be asked: “In your population model depicting evolution, what is the input, output,
integration, and feedback,” these types of questions would directly assess the computational
process as well as the computational product (from the LBECT-LP). Results from these
assessments may be scaled using the simple, developing, and complex model from the
LBECT-LP, and as defined by the instructor for the specific computational tasks.

Future research could involve developing specific interventions that use computational
thinking to teach scientific content. Assessments required in future research may test the
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specific content knowledge (i.e., biological evolution) and computational thinking knowledge.
The results from these interventions may be compared to groups of students who have not
received the computational interventions to identify if and how computational thinking
contributes to learning. Although such an experimental study has not been published at this
time, the first author performed a pilot study to begin validating data collection instruments
(measuring both knowledge of evolution and computation) and inform two computational
interventions in the context of biological evolution. Each assessment was given to each student
three times, one in the form of a pretest, one after the first computational intervention, and one
after the second computational intervention. Results indicated there was a strong correlation
between the pretest computational knowledge scores and the posttest 2 computational knowl-
edge scores, posttest intervention 1 computational scores and the posttest intervention 2
computational scores, and posttest 1 and posttest 2 evolution scores. Follow-up univariate
tests indicated that there was a significant increase in biology knowledge scores over time,
with large effect size; but no significant difference in computational scores over time. Based on
these results, the first author made adjustments to the interventions to more explicitly empha-
size computational reasoning based on the LBECT-LP, and conducted a follow-up, quasi-
experimental study. Initial results revealed that of the two computational interventions, one
was successful in producing in biological knowledge gains over time, suggesting that the
instructional context and computational process were influential on participant knowledge
gains between the intervention groups. Analysis of participant artifacts revealed that biological
levels identified and biological level connections made by participants also differed between
the two computational intervention groups. Participants who had stronger gains in evolution
knowledge made more connections across biological levels.

There are a variety of reasons why computational thinking is not supported in biology
classrooms including teacher preparation and their comfort with the technology and concepts.
Frequently, schools and districts lack sufficient funding for technology, hardware, software,
and professional development required for teachers to become properly trained using these
tools. Teachers and administrators are frequently unaware of the potential programs that are
available, how the programs may be integrated into curriculums, and the variety of disciplines
that may utilize the programs. There are some programs such as R or C++ that are free for
users, but require a large amount of time in order to learn. With this robust source, teachers
would need to become very knowledgeable in developing activities and properly scaffolded
lessons that merge content with the interfaces. Many of these realizations arose from planning
the quasi-experimental design studies with high school and college teachers and
administrators.

If teachers are open to using computational thinking in their classroom, in many cases, they
view it as a package (that is interface heavy) for one lesson and learn applications for specific
concepts. However, they may not see computation as a robust tool that may be developed and
used as a working biological instrument to be used across various applications. Most software
that is user friendly and appealing to teachers is specific for performing one type of activity.
Although the software itself may be advanced, it can be expensive and is counter intuitive to
our proposed learning progression. For example, an electronic probe that measures and
displays conductivity can only be used to measure and display conductivity in the way that
it was written into the software. We consider these types of activities simple within the learning
progression. As students use inexpensive or free programs such as R or C++, it would allow
them to take the conductivity data (obtained from a probe for example) and imagine and write
[code for] the ways it might be manipulated or displayed. These types of activities lend toward
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the developing (or complex) levels of the LP. It may be difficult for educators to identify
appropriate software, and specifically recognize how they may use the software to scaffold
lessons through the simple, developing, and complex components of the learning progression.

It takes a great deal of time for students, teachers, and professionals in the field to learn
computer languages. The payoff for learning these languages is great because the tools are then
available for future use. The component of language learning is displayed by the computa-
tional complexity aspect of the learning progression. Computational processes are difficult to
assess, and teachers may have difficulty in developing rubrics; however, these rubrics may be
made more concrete through the use of our LP. Interpretation of assignment requirements may
also be difficult or frustrating for students.

In many cases, the first time students encounter programming, especially to find a means to
an answer questions on their own, it is at the masters or independent research level of
education. Independent thinking in which students develop tools or discover new knowledge
should not be an experience reserved for graduate level students. Often, lack of computational
thinking skills is the reason students have difficulty in independent scientific thinking. Specific
implementation of computational thought processes in biology classrooms has not been
explored quantitatively or qualitatively. It is unknown how computational processes will help
students to better understand evolution and in turn how this might strengthen their knowledge
within the domain of biology as a whole. Using computation should strengthen student
knowledge and NOS processes, but it is unclear in what ways. Students may become more
comfortable developing new computational tools or applying these skills to other disciplines. It
is also unknown how computational processes explored through this type of learning progres-
sion may relate to overall student achievement or collaborative learning outcomes.

9 Conclusion

Along with teacher apprehension to teaching evolution, educators are also apprehensive to
tools associated with computational thinking; this may be alleviated with the assistance of the
LBECT-LP. For example, there is positive and strong association between teachers’ science
education and experiences as a scientist and likelihood and degree to which evolution is taught
in their classrooms (Nehm et al. 2009). Not exposing our young science learners to compu-
tational thinking at an early age is a major disservice to them and may hinder the future of
STEM fields. Computational methods incorporated into biology classes to learn biological
evolution is controversial; however, it has the potential to alleviate misconceptions, reinforce
the nature of science, and encourage student embodiment. The learning progression we
provided may be used by a variety of educational, science, and computational professionals
to consider the most appropriate application and integration (of the related concepts). The
LBECT-LP would encourage students to practice thought processes that may encourage
higher-order science understanding and promote curricular relationships across disciplinary
domains. As teachers implement these strategies, it would provide them with a new robust
resource and alternative ways to promote learning more similar to those in the science field.

Increased scientific literacy that promotes equitable problem-solving and action to address
local, regional, and global challenges requires improved science learning (McDonald 2016).
However, as the sciences have become more cross disciplinary, there have been little methods
of implementation that are domain content heavy. The trends of coding and STEM in general
are becoming more popular for students; however, it is important that the content is
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implemented in ways that would be most beneficial to all students, which include merging
these ideas with their core content subjects. Although our argument to incorporate computa-
tional thinking is directly related to science courses, and specifically biology, the NGSS
stresses the concept across various STEM fields. Not only should computational thinking be
stressed in science courses but in all courses which emphasize STEM and the cross-cutting
concepts. Students should envision computational thinking and its associated tools as process-
es they can use outside of computer science courses. As these technologies and associated
processes gain popularity and become implemented, it is imperative that they are actually
promoting student success within the STEM fields. Understanding the learning processes,
hardships, and benefits of these processes is essential for continued growth within STEM
education to promote success among all types of students.

Although the theoretical framework lends toward a full learning progression, very small
components (e.g., simple computation from the LBECT-LP) can be initially used by districts
to faciliate implementation in its entirety. It is difficult for researchers to provide particular
examples of interventions for educators because teachers have different training and teaching
styles, and many districts have limited resources (e.g., computers and software). Within the
NGSS, the standards allow teachers freedom to develop classroom activities, just as this
LBECT-LP would allow freedom for teachers to develop their own interventions and written
assessment methods to integrate computation. Because biological evolution is specific, other
[scientific] topics taught computationally may have their own set of NGSS standards as well as
learning objectives that would need to be aligned with different LPs. This would take extensive
knowledge of a computational expert coupled with scientists and educational professionals. In
order to alleviate this, computation should be taught during college courses (for prospective
teachers) through genuine research experiences in their science or pedagogical courses.
However, computational integration is not frequent in these courses and ironically part of
our argument to advocate for computation earlier in education. Lack of computational
knowledge and resources limits teachers, prospective teachers, and paradoxically even those
within the scientific community.

The LBECT-LP provides specific content (unity and diversity), state standards, and
(computational) strategies for biology instructors or those in closely related fields. It promotes
holistic type learning and structure for biology teachers to implement lessons which are new,
cross-curricular, and engaging. Not only would it promote students to behave more like
scientists, but it would also encourage this type of teaching from instructors. It may also
inform teacher trainings, curriculum writers, science learning companies, technology compa-
nies, and computational biologists and or encourage their interaction. Because computational
thinking is emphasized in the NGSS, it is applicable to other scientific fields. Computational
thinking may also be used to reinforce NOS processes in other science disciplines.

Getting individuals to think like scientists early on in education is critical for democratic
societies. This is especially true with the rise in AI, bioinformatics, and threat of abstractions
becoming indistinguishable from reality. A scientifically minded type of population may better
understand and critically evaluate itself and its role in the natural world. Allowing students to
develop creative and critical viewpoints contributes to resisting anti scientific schools of
thought (Longbottom and Butler 1999). Using logic, creating variables, and tools to simulate
reality is inseparable from computational thinking; therefore, it is essential that we provide this
opportunity for students in order provide them the best education possible within their biology
courses.
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